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On pricing derivatives

Consider a very general derivatives portfolio: interest rate swaps,
Treasury futures, equity options, default swaps, CDO tranches, etc.

In many or even most cases, preferred pricing model requires
simulation.

Models with analytical solution typically impose restrictive assumptions
(Black-Scholes, most famously).
Simulation almost unavoidable for many path-dependent and basket
derivatives.

For trading applications, simulation often too slow for use in real
time.

Endless variety of short-cut approaches, but in practice many are
calibrated to “deltas” from a simulation run overnight.
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Risk-management adds a new wrinkle

Talking here about risk-measurement of portfolio at some chosen
horizon.

Large loss exceedance probabilities.
Quantiles of the loss distribution (value-at-risk).

Simulation-based algorithm is nested:

Outer step: Draw paths for underlying prices to horizon and
calculate implied cashflows during this period.

Inner step: Re-price each position at horizon conditional on drawn
paths.

Computational task perceived as burdensome because inner step
simulation must be executed once for each outer step simulation.

Practitioners invariably use rough pricing tools in the inner step in
order to avoid nested simulation.

We show the convention view is wrong – inner step simulation need
not be burdensome.
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Model framework

The present time is normalized to 0 and the model horizon is H.

Let Xt be a vector of m state variables that govern underlying prices
referenced by derivatives.

interest rates, default intensities, commodity prices, equity prices, etc.

Let ξ be the information generated by {Xt} on t = (0,H].

The portfolio consists of K + 1 positions.

The price of position k at horizon depends on t, ξ, and the
contractual terms of the instrument.

For some exotic options, the price at H will depend on the entire path
of Xt on t = (0,H], so we need the filtration ξ and not just XH .

Position 0 represents the sub-portfolio of instruments for which there
exist analytical pricing functions.

Positions 1 through K must be priced by simulation.
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Portfolio loss

“Loss” is defined on a mark-to-market basis

Current value less discounted horizon value, less PDV of interim
cashflows.

Let Wk be the loss on position k; Y =
∑

k Wk is the portfolio loss.

Valuations are expressed in currency units, may be positive or negative.

Conditional on ξ, Wk(ξ) is non-stochastic.

Except for position 0, we do not observe Wk(ξ), but rather obtain
noisy simulation estimates W̃k(ξ) and Ỹ (ξ).
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Simulation framework

Let L be number of outer step trials. For each trial ` = 1, . . . , L:
1 Draw a single path Xt for t = (0,H] under the physical measure.

Let ξ represent the relevant information for this path.

2 Evaluate the value of each position at horizon.

Accrue interim cashflows to H.
Closed-form price at H for instrument 0.
Simulation with N “inner step” trials to price each remaining positions
k = 1, . . . ,K . Here we use the risk-neutral measure.

3 Discount back to time 0, subtract from current value, get our position
losses W0(ξ), W̃1(ξ), . . . , W̃K (ξ).

4 Portfolio loss Ỹ (ξ) = W0(ξ) + W̃1(ξ) + . . .+ W̃K (ξ).
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Dependence in inner and outer steps

Full dependence structure across the portfolio is captured in the
period up to the model horizon.

Inner step simulations are run independently across positions.

Value of position k at time H is simply a conditional expectation of its
own subsequent cashflows.
Does not depend on future cashflows of other positions.

Independent inner steps imply that pricing errors are independent
across positions, and so tend to diversify away at portfolio level.

Also reduces memory footprint of inner step: For position k, need
only draw joint paths for the elements of Xt upon which instrument k
depends.
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Overview of our contribution

Key insight of paper is that mean-zero pricing errors have minimal
effect on estimation. Can set N small!

For finite N, estimators of exceedance probabilities, VaR and ES are
biased (typically upwards).

We obtain bias and variance of these estimators.

Can allocate fixed computational budget between L,N to minimize
mean square error of estimator.

Large portfolio asymptotics (K →∞).

Jackknife method for bias reduction.

Dynamic allocation scheme for greater efficiency.
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Estimating probability of large losses

Goal is efficient estimation of α = P(Y (ξ) > u) via simulation for a
given u (typically large).

If analytical pricing formulae were available, then for each generated
ξ, Y (ξ) would be observable.

In this case, outer step simulation would generate iid samples
Y1(ξ1),Y2(ξ2), . . . ,YL(ξL), and we would take average

1

L

L∑
i=1

1[Yi (ξi ) > u]

as an estimator of α.
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Pricing errors in inner step

When analytical pricing formulae unavailable, we estimate Y (ξ) via
inner step simulation.

Let ζki (ξ) be zero-mean pricing error associated with i th “inner step”
trial for position k.

Let Zi (ξ) be the zero-mean portfolio pricing error associated with this
inner step trial, i.e., Zi (ξ) =

∑K
k=1 ζki (ξ).

Average portfolio error across trials is Z̄N(ξ) = 1
N

∑N
i=1 Zi (ξ).

Instead of Y (ξ), we take as surrogate Ỹ (ξ) ≡ Y (ξ) + Z̄N(ξ).

By the law of large numbers,

Z̄N(ξ) → 0 a.s. as N →∞

i.e., pricing error vanishes as N grows large.
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Mean square error in nested simulation

We generate iid samples (Ỹ1(ξ1), . . . , ỸL(ξL)) via outer and inner step
simulation, and take average

α̂L,N =
1

L

L∑
`=1

1[Ỹ`(ξ`) > u].

Let αN ≡ P(Ỹ (ξ) > u) = E [α̂L,N ].

Mean square error decomposes as

E [α̂L,N − α]2 = E [α̂L,N − αN + αN − α]2 = E [α̂L,N − αN ]2 + (αN − α)2.

α̂L,N has binomial distribution, so variance term is

E [α̂L,N − αN ]2 =
αN(1− αN)

L
.
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Approximation for bias

Proposition:
αN = α+ θ/N + O(1/N3/2)

where

θ =
−1

2

d

du
f (u)E [σ2

ξ |Y = u],

and where σ2
ξ = V [Z1|ξ] is the conditional variance of the portfolio pricing

error, and f (u) is density of Y .

Our approach follows Gouriéroux, Laurent and Scaillet (JEF, 2000)
and Martin and Wilde (Risk, 2002) on sensitivity of VaR to portfolio
allocation.

Independently derived by Lee (PhD thesis, 1998).

Ỹ is mean-preserving spread of Y . Bias is upwards for large enough
u, except under pathological cases.

Similar approximations for bias in VaR and ES.
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Example: Gaussian loss and pricing errors

Highly stylized example for which RMSE has analytical expression.

Homogeneous portfolio of K positions.

Let X ∼ N (0, 1) be a market risk factor.

Loss on position k is Wk = (X + εk)/K per unit exposure where the
εk are iid N (0, ν2).

Scale exposures by 1/K to ensure that portfolio loss distribution
converges to N (0, 1) as K →∞.

Implies portfolio loss Y ∼ N (0, 1 + ν2/K ).

Assume pricing errors ζk· iid N (0, η2), so portfolio pricing error has
variance σ2 = η2/K for each inner step trial.

Implies Ỹ = Y + Z̄N ∼ N (0, 1 + ν2/K + σ2/N).
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Density of the loss distribution

Parameters: ν = 3, η = 10, K = 100.
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Exact and approximate bias in Gaussian example

Variance of Y is s2 = 1 + ν2/K , variance of Ỹ is s̃2 = s2 + σ2/N.

Exact bias is
αN − α = Φ(−u/s̃)− Φ (−u/s)

Apply Proposition to approximate αN − α ≈ θ/N where

θ = φ(−u/s)
uσ2

2s3
.
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Bias in Gaussian example

Parameters: ν = 3, η = 10, K = 100, u = F−1(0.99).
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Optimal allocation of workload

Total computational effort is L(Nγ1 + γ0) where

γ0 is average cost to sample ξ (outer step).
γ1 is average cost per inner step sample.

Fix overall computational budget Γ.

Minimize mean square error subject to Γ = L(Nγ1 + γ0).

For Γ large, get

N∗ ≈
(

2θ2

α(1− α)γ1

)1/3

Γ1/3

L∗ ≈
(
α(1− α)

2γ2
1θ

2

)1/3

Γ2/3

Similar results in Lee (1998).

Analysis for VaR and ES proceeds similarly, also find N∗ ∝ Γ1/3.
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RMSE in Gaussian example

Approximate Γ ∝ N · L. Parameters: ν = 3, η = 10, K = 100, u = F−1(0.99).
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Optimal N in Gaussian example

Approximate Γ ∝ N · L. Parameters: ν = 3, η = 10, K = 100, u = F−1(0.99).
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Large portfolio asymptotics

Consider an infinite sequence of exchangeable positions.

Let Ȳ K be average loss per position on a portfolio consisting of the
first K positions, i.e.,

Ȳ K =
1

K

K∑
k=1

Wk .

Assume budget is χKβ for χ > 0 and β ≥ 1.

Assume fixed cost per outer step is ψ(m,K ), so budget constraint is

L(KNγ1 + ψ(m,K )) ≤ χKβ

Proposition: For β ≤ 3, N∗ → 1 as K →∞.
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Optimal allocation as portfolio size varies

Budget is Γ ∝ N · L for K = 100 and grows linearly with K .

Parameters: ν = 3, η = 10, Γ = 214, u = F−1(0.99).
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Jackknife estimators for bias correction

In simplest version, divide inner step sample into two subsamples of
N/2 each.

Let α̂j be the estimator of α based on subsample j .

Observe that the bias in α̂j is θ/(N/2) plus terms of order O(1/N3/2).

We define the jackknife estimator aL,N as

aL,N = 2α̂L,N −
1

2
(α̂1 + α̂2)

Jackknife estimator requires no additional simulation work.

Can generalize by dividing the inner step sample into I overlapping
subsamples of N − N/I trials each.
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Bias reduction

The bias in aL,N is

E [aL,N ]− α = 2αN − αN/2 − α

= 2(α+ θ/N + O(1/N3/2))− (α+ θ/(N/2) + O(1/N3/2))− α

= θ

(
2

N
− 1

N/2

)
+ O(1/N3/2) = O(1/N3/2).

First-order term in the bias is eliminated.

Variance of aL,N depends on covariances among α̂L,N , α̂1, α̂2.
Tedious but tractable. Find Var[aL,N ] > Var[α̂L,N ].

Optimal choice of N∗ and L∗ changes because bias is a lesser
consideration and variance a greater consideration.

Find N∗ ∝ Γ1/4 (versus 1/3 for uncorrected estimator) and
L∗ ∝ Γ3/4 (versus 2/3).

Gordy/Juneja (FRB/TIFR) Nested Simulation April 2008 23 / 28



Jackknife estimator for Gaussian example

Both bias and variance have analytical expressions in this example.

Variance involves bivariate normal cdfs.

Example with N = 8, ν = 3, η = 10, K = 100, u = F−1(0.99):

Bias (bp) Std Dev (pct)

Uncorrected α̂L,N 37.8 11.7/
√

L

Jackknife aL,N -3.8 14.5/
√

L

Optimizing for fixed budget N · L = 216:

N∗ Bias (bp) RMSE (bp)
Uncorrected α̂L,N 22.6 12.9 23.5
Jackknife aL,N 6.0 -6.2 17.7
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Dynamic allocation

For given ξ, say we estimate Y (ξ) with a small number n1 of inner
step trials.

If |Ỹ n1(ξ)− u| � 0, then 1[Ỹ n1(ξ) > u] is a good estimator of
1[Y (ξ) > u], even though Ỹ n1(ξ) not a good estimator of Y (ξ).
⇒ No need to do more inner step trials for this ξ!

To implement this intuition in algorithm, fix n1, n2 and bandwidth ε.
For each outer step draw ξ:

1 Simulate n1 inner step trials to get Ỹ n1(ξ).
2 If Ỹ n1(ξ) > u − ε, generate another n2 inner step trials, set

Ỹ DA(ξ) = Ỹ n1+n2(ξ).
3 Otherwise, we stop and set Ỹ DA(ξ) = Ỹ n1(ξ).

Dynamic allocation estimator is

α̂DA =
1

L

L∑
`=1

1[Ỹ DA(ξ`) > u].
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Lower bias, lower effort

Average effort proportional to n1 + n2 · P(Ỹ n1(ξ) > u − ε) < n1 + n2, so
reduced relative to static estimator with N = n1 + n2.
Bias under DA is

P(Ỹ DA > u, Ỹ n1 > u − ε)− P(Y > u)

= P(Ỹ n1+n2 > u)− P(Y > u)− P(Ỹ n1+n2 > u, Ỹ n1 ≤ u − ε)

= (αN − α)− P(Ỹ n1+n2 > u, Ỹ n1 ≤ u − ε) < αN − α

so DA introduces negative increment to bias, relative to static estimator.
In typical application, αN − α > 0. In this case, by choosing large enough
ε can always reduce absolute bias relative to static estimator with
N = n1 + n2.

Even when αN − α cannot be signed, we can bound the increase in bias
relative to static scheme, so can trade off increase in bias vs reduction in
effort.

Variance is dominated by α(1− α)/L, so insensitive to DA.
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Dynamic allocation in Gaussian example

E [α̂DA] has analytical expression as a bivariate normal cdf.

Fix ν = 3, η = 10, K = 100, u = F−1(0.99) as in baseline examples.

Static scheme with N = 32 has bias of 9.0 bp.

DA with n1 = 1, n2 = 31, ε =
√

Var[Y ] has bias of -0.4 bp and
N̄DA = 6.24.

Effort reduced by 80%, absolute bias by 95%.
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Conclusion

Large errors in pricing individual position can be tolerated so long as
they can be diversified away.

Inner step gives errors that are zero mean and independent. Ideal for
diversification!
In practice, large banks have many thousands of positions, so might
have N∗ ≈ 1.

Results suggest current practice is misguided.

Use of short-cut pricing methods introduces model misspecification.
Errors hard to bound and do not diversify away at portfolio level.
Practitioners should retain best pricing models that are available, run
inner step with few trials.

Dynamic allocation is robust and easily implemented in a setting with
many state prices and both long and short exposures.

Stands in contrast to importance sampling, control variates, and other
variance reduction methods.
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